I really like the technique you have shared a few times where you make the quads planar and the mesh conical and end up with something like this…
I’m interested in whether the panels could be timber frame construction like this (only quads)…
Either cutting the dihedral (?) angles on the sides of the timber frame so the mesh faces remain planar (for glazing) or building the dihedral angle into each panel frame and cutting the top edges back to make the face planar again (which could require some pretty challenging compound angles in the panel corners).
Building the angles into the frame may allow for surfaces with greater curvature as too great a dihedral angle would cut the bottom of the timber frame edge.
But is this a beam or plate based structure? Each panel could be bolted to the next through the sides of each timber frame but this then makes each pair of adjacent panel edges a beam and the timber joints in the corner of each panel frame are what will dictate the strength of the whole structure I guess.
And so I assume that aligning the principal stress directions with the beam directions is still good for structural efficiency but the beams are not continuous across the structure since they are made up of segments relying on the timber panel frame corner joints for strength.
I guess I am trying to understand the limitations of making timber frames to build structures like this and whether this method of fabrication is going to require some careful design constraints when designing the structure form (i.e. limits of curvature, mix of +/- curvature, quad / tri / hexagon, etc etc)