
A list is a box with multiple pieces of data in it. “John” “Tina” “Sheryl” “Steve”

A list is a box with multiple pieces of data in it. “John” “Tina” “Sheryl” “Steve”

Within that box, each piece of data has an address
called a list index. The first item has index 0.

“John” “Tina” “Sheryl” “Steve”

0 1 2 3

A list is a box with multiple pieces of data in it. “John” “Tina” “Sheryl” “Steve”

Within that box, each piece of data has an address
called a list index. The first item has index 0.

“John” “Tina” “Sheryl” “Steve”

0 1 2 3

Individual items can be retrieved by their index.

2

“John” “Tina” “Sheryl” “Steve”

0 1 2 3 LIST

INDEX

ITEM

LI
ST

 IT
EM

“Sheryl”

Sometimes, it is necessary to be able to manage
multiple lists at a time. In Grasshopper, this is handled
with a data structure called “Data Trees.” The
terminology can seem a bit daunting, but don’t be
intimidated.

The first thing you need to know is that a “Branch” of
a data tree is a list, and a Tree is a structure that can
have multiple branches.

The red line in the diagram represents the entire tree.
This tree has three branches, and much the way
branch items have indices which act as a sort of
“address” to their position, each branch also has an
“address,” called a path. The numbers in { } are the
path for each branch. Branches do not have to
contain the same number of items. Like item indices,
branch path indices begin counting at 0.

“John” “Tina” “Sheryl” “Steve”

0 1 2 3

{0;0}

{0;...}

{0;1}

{0;2}

“Natasha” “Rolf” “Larry”

0 1 2

“Betty” “Sonya” “Kathryn”

0 1 2

0

1

2

3 {0;0}{0;1}

{0;2}

0

1 2

0

1 2

Keeping branches separate is a means to organize
information, and to relate sets of information to one
another. Let’s suppose that the three branches above
represent three different tables for a small dinner
party, and the indices represent seats at those tables.

“John” “Tina” “Sheryl” “Steve”

0 1 2 3

{0;0}

{0;...}

{0;1}

{0;2}

“Natasha” “Rolf” “Larry”

0 1 2

“Betty” “Sonya” “Kathryn”

0 1 2

“John”

“Tina”

“Sheryl”

“Steve”

“Natasha”

“Rolf” “Larry”

“Betty”

“Sonya” “Kathryn”

Every piece of data - each dinner guest - is
represented by a complete address that includes its
branch path and its item index.

{0;1}

“John” “Tina” “Sheryl” “Steve”

0 1 2 3

{0;0}

{0;...}

{0;1}

{0;2}

“Natasha” “Rolf” “Larry”

0 1 2

“Betty” “Sonya” “Kathryn”

0 1 2

TREE

INDEX

PATH
ITEM

TR
EE

 IT
EM

“Larry”

{0;1}

2

Branch paths may have several layers of hierarchy.
These are represented by the sequence of numbers in
the branch path. A path like “{0;4;2;7;1}” is not
uncommon in a complex definition, indicating five
layers of hierarchy. I tend to think of these levels as
nested boxes, where the leftmost number represents
the outermost box.

The diagram to the right, a tree of number values
(shown in black), has 3 layers of hierarchy. Let’s say
these values are daylighting analysis values for a
multi-building campus. The layers of hierarchy are
organizing the data in the following way:

{0;0;...}

{0;...}{0;...}

{0;1;...}

{0;2;...}

{0;0;0}

{0;0;1}

{0;1;0}

{0;1;1}

{0;1;2}

{0;1;3}

{0;2;0}

{0;2;1}

{0;2;2}

3.0 4.3 8.4 7.4 1.7 8.1

3.4 1.1 3.3 3.2 3.8 3.2

1.8 2.1 3.0 9.0 3.6 9.9

1.5 2.4 7.9 9.3 7.5 0.2

5.4 2.2 3.7 7.0 3.6 9.2

7.2 2.7 3.9 9.2 3.5 5.6

8.8 8.1 3.9 10.2 3.5 7.2

0.4 2.1 3.9 0.6 3.8 9.2

1.2 2.6 3.3 0.2 7.5 9.2

{A;B;C} (i)
the

entire
campus

the
buildings

the
building

levels

individual
spaces

The diagram to the right, a tree of number values
(shown in black), has 3 layers of hierarchy. Let’s say
these values are daylighting analysis values for a
multi-building campus. The layers of hierarchy are
organizing the data in the following way:

{0;0;...}

{0;...}{0;...}

{0;1;...}

{0;2;...}

{0;0;0}

{0;0;1}

{0;1;0}

{0;1;1}

{0;1;2}

{0;1;3}

{0;2;0}

{0;2;1}

{0;2;2}

3.0 4.3 8.4 7.4 1.7 8.1

3.4 1.1 3.3 3.2 3.8 3.2

1.8 2.1 3.0 9.0 3.6 9.9

1.5 2.4 7.9 9.3 7.5 0.2

5.4 2.2 3.7 7.0 3.6 9.2

7.2 2.7 3.9 9.2 3.5 5.6

8.8 8.1 3.9 10.2 3.5 7.2

0.4 2.1 3.9 0.6 3.8 9.2

1.2 2.6 3.3 0.2 7.5 9.2

{A;B;C} (i)
the

entire
campus

the
buildings

the
building

levels

individual
spaces

building 0

building 1
building 2

floor 0
floor 1

floor 0
floor 1
floor 2

floor 0
floor 1
floor 2

floor 3

Campus 0

The diagram to the right, a tree of number values
(shown in black), has 3 layers of hierarchy. Let’s say
these values are daylighting analysis values for a
multi-building campus. The layers of hierarchy are
organizing the data in the following way:

{0;0;...}

{0;...}{0;...}

{0;1;...}

{0;2;...}

{0;0;0}

{0;0;1}

{0;1;0}

{0;1;1}

{0;1;2}

{0;1;3}

{0;2;0}

{0;2;1}

{0;2;2}

3.0 4.3 8.4 7.4 1.7 8.1

3.4 1.1 3.3 3.2 3.8 3.2

1.8 2.1 3.0 9.0 3.6 9.9

1.5 2.4 7.9 9.3 7.5 0.2

5.4 2.2 3.7 7.0 3.6 9.2

7.2 2.7 3.9 9.2 3.5 5.6

8.8 8.1 3.9 10.2 3.5 7.2

0.4 2.1 3.9 0.6 3.8 9.2

1.2 2.6 3.3 0.2 7.5 9.2

{A;B;C} (i)
the

entire
campus

the
buildings

the
building

levels

individual
spaces

building 0

building 1
building 2

floor 0
floor 1

floor 0
floor 1
floor 2

floor 0
floor 1
floor 2

floor 3

Campus 0

TREE

INDEX

PATH
ITEM

TR
EE

 IT
EM

{0;2;0}

2

3.9

Let’s return to our dinner party to demonstrate some
basic tree operations: “flatten” and “graft.”

Let’s return to our dinner party to demonstrate some
basic tree operations: “flatten” and “graft.”

“John” “Tina” “Sheryl” “Steve”

0 1 2 3

{0;0}

{0;...}

{0;1}

{0;2}

“Natasha” “Rolf” “Larry”

0 1 2

“Betty” “Sonya” “Kathryn”

0 1 2

“John” “Tina” “Sheryl” “Steve”

0 1 2 3

{0;0}

{0;...}

{0;1}

{0;2}

“Natasha” “Rolf” “Larry”

0 1 2

“Betty” “Sonya” “Kathryn”

0 1 2

Flatten essentially removes all hierarchy information
from a tree, and puts all the items into a single list.

LIST FLAT LIST

FL
AT

TE
N

“John” “Tina” “Sheryl” “Steve”

0 1 2 3

“Natasha” “Rolf” “Larry”

4 5 6

“Betty” “Sonya” “Kathryn”

7 8 9

“John” “Tina” “Sheryl” “Steve”

0 1 2 3

{0;0}

{0;...}

{0;1}

{0;2}

“Natasha” “Rolf” “Larry”

0 1 2

“Betty” “Sonya” “Kathryn”

0 1 2

LIST FLAT LIST

FL
AT

TE
N

“John” “Tina” “Sheryl” “Steve”

0 1 2 3

“Natasha” “Rolf” “Larry”

4 5 6

“Betty” “Sonya” “Kathryn”

7 8 9

If we take the list length of our original tree, we get
a head count per table, because each branch
represents a different table.

LIST LENGTH

LI
ST

 L
EN

G
TH

4

3

3

0

{0;0}

{0;...}

{0;1}

{0;2}

0

0

“John” “Tina” “Sheryl” “Steve”

0 1 2 3

{0;0}

{0;...}

{0;1}

{0;2}

“Natasha” “Rolf” “Larry”

0 1 2

“Betty” “Sonya” “Kathryn”

0 1 2

LIST FLAT LIST

FL
AT

TE
N

“John” “Tina” “Sheryl” “Steve”

0 1 2 3

“Natasha” “Rolf” “Larry”

4 5 6

“Betty” “Sonya” “Kathryn”

7 8 9

If we take the list length of our original tree, we get
a head count per table, because each branch
represents a different table.

LIST LENGTH

LI
ST

 L
EN

G
TH

4

3

3

0

{0;0}

{0;...}

{0;1}

{0;2}

0

0

Creating a single list of all the guests might be useful to take an overall headcount, for
instance, by taking the list length of the flattened list.

10
LIST LENGTH

LI
ST

 L
EN

G
TH

“John” “Tina” “Sheryl” “Steve”

0 1 2 3

{0;0}

{0;...}

{0;1}

{0;2}

“Natasha” “Rolf” “Larry”

0 1 2

“Betty” “Sonya” “Kathryn”

0 1 2

Graft, on the other hand, adds a layer of hierarchy
by putting each item in its own branch. Note how
what was previously the item index becomes the
lowermost level of hierarchy in the branch path.

LIST
GRAFTED

LIST

G
RA

FT

“John”

“Tina”

“Sheryl”

“Steve”

{0;0;...}

{0;0;0}

{0;0;1}

{0;0;2}

{0;1;0}

{0;1;1}

{0;1;2}

{0;2;0}

{0;2;1}

{0;2;2}

{0;0;3}

{0;...}

{0;1;...}

{0;2;...}

“Natasha”

“Rolf”

“Larry”

“Betty”

“Sonya”

“Kathryn”

GUESTS

“John” “Tina” “Sheryl” “Steve”

0 1 2 3

{0;0}

{0;...}

{0;1}

{0;2}

“Natasha” “Rolf” “Larry”

0 1 2

“Betty” “Sonya” “Kathryn”

0 1 2

LIST
GRAFTED

LIST

G
RA

FT

“John”

“Tina”

“Sheryl”

“Steve”

{0;0;...}

{0;0;0}

{0;0;1}

{0;0;2}

{0;1;0}

{0;1;1}

{0;1;2}

{0;2;0}

{0;2;1}

{0;2;2}

{0;0;3}

{0;...}

{0;1;...}

{0;2;...}

“Natasha”

“Rolf”

“Larry”

“Betty”

“Sonya”

“Kathryn”

GUESTS

Scallops Beef

Beef

Beef

Beef

Beef

Beef

Beef

Tempeh

Halibut

Tempeh

Scallops

Pasta

Pasta

Pasta

Pasta

Pasta

Quinoa

Quinoa

Quinoa

Quinoa

Quinoa

Green Salad

Scallops

{0;0;...}

{0;0;0}

{0;0;1}

{0;0;2}

{0;1;0}

{0;1;1}

{0;1;2}

{0;2;0}

{0;2;1}

{0;2;2}

{0;0;3}

{0;...}

{0;1;...}

{0;2;...}

Scallops

Green Salad

Scallops

Scallops

Scallops

Scallops

DISHES

Since some of our guests are vegetarian, some are
gluten-free, and some don’t eat red meat,
maintaining a separate list per guest allows us to
correlate it with another list that organizes dishes per
guest. Who knew computational design could make
entertaining such a breeze?

Let’s refresh our memory on the basics of lists:

5

5
BASE PLANE

RADIUS

CIRCLE

C
IR

C
LE

0

0

0

ONE/ONE

5

BASE PLANE

RADIUS

CIRCLE
C

IR
C

LE 555

0

0 1 2

0 1 2MANY/ONE

543

BASE PLANE

RADIUS

CIRCLE

C
IR

C
LE

5
4

3

0

0 1 2

0
1
2

MANY/ONE

BASE PLANE

RADIUS

CIRCLE

C
IR

C
LE

0 1 2

543

0 1 2

0
1

2MANY/MANY

543

CURVE

COUNT

POINTS

D
IV

ID
E

5

0

0

0

1
2 3

4

5

ONE MANY

POINTS CURVE

IN
TC

RV0

1
2 3

4

5

MANY ONE

0

Let’s refresh our memory on the basics of lists:

5

5
BASE PLANE

RADIUS

CIRCLE

C
IR

C
LE

0

0

0

ONE/ONE

5

BASE PLANE

RADIUS

CIRCLE
C

IR
C

LE 555

0

0 1 2

0 1 2MANY/ONE

543

BASE PLANE

RADIUS

CIRCLE

C
IR

C
LE

5
4

3

0

0 1 2

0
1
2

MANY/ONE

BASE PLANE

RADIUS

CIRCLE

C
IR

C
LE

0 1 2

543

0 1 2

0
1

2MANY/MANY

543

CURVE

COUNT

POINTS

D
IV

ID
E

5

0

0

0

1
2 3

4

5

ONE MANY

POINTS CURVE

IN
TC

RV0

1
2 3

4

5

MANY ONE

0

If you understand this, you are close to understanding how data
trees match up as well. The same rules apply: at the level of
individual lists, all inputs to a component will have either one
item or many items, and if both inputs have many items they will
both have the same number.
A similar logic operates at the level of matching up paths
themselves. As a rule, all inputs to a component will either have
1 branch (a flat list) or N branches (a structured tree)

ONE BRANCH/ ONE BRANCH

5

5
BASE PLANE

RADIUS

CIRCLE

C
IR

C
LE

0

0

0

ONE/ONE

5

BASE PLANE

RADIUS

CIRCLE

C
IR

C
LE 555

0

0 1 2

0 1 2
MANY/ONE

543

BASE PLANE

RADIUS

CIRCLE

C
IR

C
LE

5
4

3

0

0 1 2

0
1
2

MANY/ONE

BASE PLANE

RADIUS

CIRCLE

C
IR

C
LE

0 1 2

543

0 1 2

0
1

2MANY/MANY

543

{0}

{0}

{0}

{0}

{0}

{0}

{0}

{0}

ONE BRANCH/ MANY BRANCHES
ONE ITEM/ONE ITEM

5

BASE PLANE

RADIUS

CIRCLE

C
IR

C
LE 555

0

0

0

0

{0;0} 0 {0;1} 0 {0;2} 0

RADIUS
543

0 1 2

{0;0}

{0;1}

{0;2}

{0;...}

{0}

ONE ITEM /MANY ITEMS

BASE PLANE

CIRCLE
C

IR
C

LE

0

0

0

{0;0}

{0;1}

{0;2}

{0;...}

{0}

{0;0}

5
4

3

0
1
2

{0;1}

5
4

3

0
1
2

{0;2}

5
4

3

0
1
2

RADIUS

0 1 2
{0}

ONE ITEM/MANY ITEMS

BASE PLANE

CIRCLE

C
IR

C
LE

0

0

0

{0;0}

{0;1}

{0;2}

{0;...}

5
4

3

{0;0} 0
{0;1} 0
{0;2} 0

5
4

3

5
4

3

3

4

5

{0;0} 1
{0;1} 1
{0;2} 1

{0;0} 2
{0;1} 2
{0;2} 2

RADIUS

0 1 2

1 2

1 2

1 2

{0}

MANY ITEMS /MANY ITEMS

BASE PLANE

CIRCLE

C
IR

C
LE

0

0

0

{0;0}

{0;1}

{0;2}

{0;...}

7
4

2

{0;0} 0

{0;1} 0

{0;2} 0

5
4

3

7
6

1

32 6

4 14

5 77

{0;0} 1
{0;1} 1
{0;2} 1 {0;0} 2

{0;1} 2

{0;2} 2

MANY BRANCHES/ MANY BRANCHES

6

{0;0} 0
{0;1} 0

{0;2} 0

543

ONE ITEM/ONE ITEM

BASE PLANE

RADIUS

CIRCLE

C
IR

C
LE

0

0

0

{0;0}

{0;1}

{0;2}

{0;...}

RADIUS

ONE ITEM /MANY ITEMS

BASE PLANE

CIRCLE

C
IR

C
LE

0

0

0

{0;0}

{0;1}

{0;2}

{0;...}

0

0

0

{0;0}

{0;1}

{0;2}

{0;...}

3

4

5

1 2

1 2

1 20

0

0

{0;0}

{0;1}

{0;2}

{0;...}

32 6

4 14

5 77

4
2

{0;0} 0

{0;1} 0

53
7

1

{0;0} 1

{0;1} 1 {0;2} 1{0;0} 2

{0;1} 2

{0;2} 2{0;2} 0

54

5

5

4

4

3

3

3

ONE ITEM/MANY ITEMS

BASE PLANE

RADIUS

CIRCLE

C
IR

C
LE

0

0

0

{0;0}

{0;1}

{0;2}

{0;...}

3

4

5

6

RADIUS

MANY ITEMS /MANY ITEMS

BASE PLANE

CIRCLE

C
IR

C
LE

0

0

0

1

1

1

2

2

2

{0;0}

{0;1}

{0;2}

{0;...}

0

0

0

1

1

1

2

2

2

{0;0}

{0;1}

{0;2}

{0;...}

1 2

1 2

1 20

0

0

{0;0}

{0;1}

{0;2}

{0;...}

32 6

4 14

5 77

4

4
2

{0;0} 0

{0;1} 0

53

7

7

1

{0;0} 1

{0;1} 1 {0;2} 1

{0;0} 2

{0;1} 2

{0;2} 2

{0;2} 0

{0;0} 0 {0;1} 0

{0;0} 1
{0;1} 1

{0;2} 1

{0;0} 2 {0;1} 2

{0;2} 2

{0;2} 0

DATA TREES HAPPEN ON THEIR OWN

CURVE

COUNT

POINTS

D
IV

ID
E

5

0

0

0

1
2 3

4

5

ONE MANY

POINTS CURVE

IN
TC

RV0

1
2 3

4

5

MANY ONE

0

DATA TREES HAPPEN ON THEIR OWN

CURVE

COUNT

POINTS

D
IV

ID
E

5

0

0
ONE MANY

CURVE

COUNT

POINTS

D
IV

ID
E

5

0

0 1 2
ONE MANY

When a component produces multiple outputs from single inputs,
and you give it multiple inputs...

0

1
2

3

4

DATA TREES HAPPEN ON THEIR OWN

CURVE

COUNT

POINTS

D
IV

ID
E

5

0

0
ONE MANY

CURVE

COUNT

POINTS

D
IV

ID
E

5

0

0 1 2

0
0

0

1
1

1

2

2
2

3

3

3

4
4

4

ONE MANY

When a component produces multiple outputs from single inputs,
and you give it multiple inputs...

a tree is automatically generated to keep the results organized.

0

1
2

3

4

{0;...}

{0;0} {0;1} {0;2}

POINTS CURVE

IN
TC

RV
POINTS

IN
TC

RV

0

1
2 3

4

5

MANY ONE

0

DATA TREES LET YOU KEEP DATA SEPARATE

When a component produces a single output from lists of input,
and you give it multiple branches of input...

0
0

0

1
1

1

2

2
2

3

3

3

4
4

4

{0;...}

{0;0} {0;1} {0;2}

POINTS CURVE

IN
TC

RV
IN

TC
RV

0

1
2 3

4

5

MANY ONE

0

DATA TREES LET YOU KEEP DATA SEPARATE

When a component produces a single output from lists of input,
and you give it multiple branches of input...

it produces multiple, separate items, instead of joining them together.

0
0

0

1
1

1

2

2
2

3

3

3

4
4

4

{0;...}

{0;0} {0;1} {0;2}

0

0

0

{0;...}

{0;0} {0;1} {0;2}

