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Abstract: Ruled surface is widely used in engineering design such as parting surface 

design of injection mold and checking surface design of checking fixture, which are 

usually generated by offsetting 3D curves. However, in 3D curve offset, there often 

exist break/interaction/overlapping problems which can’t be solved by current CAD 

software automatically. This paper is targeted at developing a 3D curve offsetting 

algorithm for ruled surface generation, and three key technologies are introduced in 

details: An improved curve division method is proposed to reduce the offset accuracy 

error resulted from different offset distances and curvatures; An offsetting curve 

overlapping detection and elimination method is proposed; And then, a curve 

transition method is presented to improve curve offsetting quality for the break and 

intersection/overlapping regions, where a new algorithm for generating positive 

weights spherical rational quartic Bezier curve is proposed to bridge the breaks of 

offset curves to create a smooth ruled surface. Finally, two practical design cases, 
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parting surface and checking surface generation, show that the proposed approach can 

enhance the efficiency and quality for ruled surface generation in engineering design. 
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1 Introduction 

Nowadays, there has been a growing interest in ruled surface modeling and 

machining due to three main reasons (Ding 2009). First, ruled surface-based models 

are frequently utilized for lots of industrial components, e.g. cams, dies, molds, fan 

vanes, gas turbine blades, and compressor impellers. Second, free-form surfaces can 

be approximated using piecewise ruled surfaces. Third, ruled surfaces can be 

processed in five-axis machining by flank (or side) milling which has many 

advantages over point milling, such as higher material removal rate, higher machining 

efficiency and better surface quality.  

A ruled surface can be expressed as (Do Carmo 1976): 
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(1) 

where S  is the (continuous) domain of parameters u and v, the curve ( )uP  is called 

the directrix of the surface and a line having ( )uN  as direction vector is called a 

ruling (Ding 2009). 

Let ( ) ( ) ( )u u u Q P N , where ( )uQ  is an 3D offset curve of ( )uP  along the 

vector ( )uN , then the formula can be reformed as (Zhang et al. 2010): 
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(2) 



Hence, the ruled surface can be regarded as the linear interpolation between the 

original curve and the offset one.  

Most researches about curve offsetting focus on planar and geodesic curves, such 

as tool path generation. Given a parametric curve ( ), [0,1]t tC , its offset curve with 

an offset distance d is defined by ( ) ( ) ( )o t t d t C C N , where ( )tN  is the offset rule 

which decides the form of the offset curve. For a 2D parameterized curve 

( ( ), ( )), [0,1]x t y t t C , 2 2( ) ( ( ) ( )) ( ) ( )t y t x t y t x t  N  is the unitary normal of 

the original curve ( )tC . In general, the offset curve cannot be represented in a 

polynomial or rational form because of the square root term in the denominator of the 

unit normal ( )tN , so that, it is difficult to obtain the simple forms of these offsets, 

hence, the approximation methods are needed. 

Different from 2D case, the offset rule of a 3D curve is generally not the unit 

normal of the original curve. In engineering design, ( ) ( ) ( )t t t N v k , where ( )tv  

is the unit tangent vector of ( )tC (Shin 2003). In parting surfaces design of a mold, 

( )tk  is the parting direction without relationship to the curve parameter. In the 

checking surface design of a checking fixture, ( )tk  is the unit normal vector of a 

point on the checked surface. As another difference, the overlapping of 3D offset 

curves is undesirable in engineering design, since it makes some parts of the ruled 

surface invisible. However, 3D curve offset tools are not afforded by current 

commercial CAD software, and designers have to deal with the work manually.  

In engineering design, there are many C
0
/G

0
 continuous curves. Actually, the 

connecting point with the C
0
/G

0
 continuity has two different offset directions, which 



gives rise to the offsetting curve breaks or intersections. As shown in Figure 1, Q1 is a 

co-vertex of two edges which belongs to two different surfaces, Q2 is a corner of the 

parametric region of the surface, Q3 and Q4 are the intersection points of two 

boundary edges on the surface, with the difference that Q3 is on a convex edge that 

results in breaks and Q4 on a concave edge that results in intersections. 

 

Figure 1. The result of curve offsetting with first-order-discontinuity points 

This paper focuses on 3D offsetting and some key problems in implementation 

are solved. An improved division method is proposed to enhance the accuracy of 

offset curve generation in Section 3. As a new problem in 3D curve offsetting, 

overlapping can be eliminated by the method presented in Section 4. A break and 

intersection/overlapping transition method is developed in Section 5, which includes a 

positive weights spherical rational quartic Bezier curve generation algorithm. In 

Section 6, two practical engineering design cases show the practicability of the 

methods in this paper. 

2 Related work 

During the last 20 years, a lot of methods for the planar and geodesic curve offset 

approximation have been proposed and developed, which may be classified as three 

types: (1) Control Vertex Offset Algorithm (Coquillart 1987), i.e., moving the control 



vertex of NURBS curve to be offset under given precision. (2) Circle Envelope 

Approximation Algorithm (Lee et al. 1996). The offset is the enveloping curve by 

rolling a circle along the base curve. The actual offset is obtained by convolution and 

has degree 3p-2 for non-rational curves and 5p-4 for rational ones (Piegl and Tiller 

1999), where p is the degree of the original curve. 3) Interpolation or Fitting 

Algorithm (Patrikalakis and Bardis 1989, Wolter and Tuohy 1992, Piegl and Tiller 

1999, Lee 2003, Sun 2012), which consists of four major steps: (1) special shape 

identification and handling, (2) offset curve subdivision, (3) interpolation of offset 

points, and (4) approximation by knot removal. However, the first method cannot deal 

with self-intersection problems. And the second one has two major flaws (Piegl and 

Tiller 1999): (1) the resulted offset curve has a large number of control points; (2) the 

offset curve is of a high degree, e.g., the offset of a degree three rational curve is a 

rational curve of degree eleven. Therefore, the Interpolation or Fitting Algorithms are 

prevalent in researches.  

 To reduce the complexity, a curve is usually subdivided into line segments. Curve 

division algorithm is also used in curve/curve intersection (Srijuntongsiri 2011), tool 

path generation (Shen et al. 2010) and meshing (Laug 2010). There are two ways: (1) 

Parametric algorithm (Filip 1986) which determines the subdivision points number 

based on secondary derivate, as used in the researchers (Piegl and Tiller 1999, Sarma 

and Rao 2000, Sun et al. 2004). (2) Geometric algorithm which divides a curve 

iteratively until it satisfies the precision condition. Piegl (2002) decomposed a 

NURBS curve into several Bézier segments, and divided each segments with 



bisection until the arch rise was under the given precision. Bae (2002) subdivided the 

Bézier curve by applying consecutive stepwise degree reduction processes combined 

with adaptive subdivision - in each degree reduction step, a Bézier curve was 

subdivided until the approximation error from degree reduction is smaller than the 

corresponding step tolerance. The terminal condition of the Bézier segment division 

affects the precision and efficiency of the whole curve division directly. Lane and 

Riesenfeld (1980) proposed a termination criterion of the bisection subdivision. And 

then, Zhang and Wang (2003) improved the condition by some new estimate methods 

for the segment deviation of degree n (n=2, 3, 4) rational Bézier curves. However the 

above algorithms only consider the division precision to approximate a curve itself 

and ignore the offset accuracy of a curve with different curvatures, which is improved 

in this paper 

The offset curve may self-intersect locally when the absolute value of the offset 

distance exceeds the minimum radius of curvatures in the concave regions. Also, the 

offset curve can self-intersect globally when the distance between two distinct points 

on the curve reaches a local minimum (Maekawa 1999). In general, invalid loops 

caused by self-intersections need be detected and eliminated. Elber and Cohen (1991) 

detected local self-intersections of offset curves by checking whether the tangent 

fields have opposite directions. Lee et al. (1996) applied a plane sweeping algorithm 

to detect all self-intersections of planar offset curves. Choi and Park (1999) removed 

local invalid loops from the input PS-curve before constructing a raw offset-curve, by 

invoking a pair-wise interference-detection (PWID) test. Elber (2003) and Seong et 



al. (2006) presented a scheme to trim both local and global self-intersections of offset 

curves and surfaces. The scheme was based on the derivation of an analytic distance 

map between the original curve and its offset. By solving one bivariate polynomial 

equation for an offset curve, all the local and global self-intersection regions in the 

offset curves can be identified. The traditional method based on interference 

detections by searching for all contact positions is a time consuming process. Lai 

(2011) proposed a new algorithm called the forward locus tracing method (FLTM) 

which searches for all intervals split by intersections of complicated planar curves 

directly and transforms 2D transversal intersection problems into 1D interval 

identifications. Pekerman et al. (2008) presented several algorithms for 

self-intersection detection, and possible elimination, in freeform planar curves.  

Compared with prior works, this paper focus on three aspects of 3D curve offset 

in engineering design: 

1) Considering the accuracy effect by the different offset distances and 

curvatures, and improving the division method. 

2) Eliminating the overlapping region. 

3) Connecting the discontinuous or low-continuous regions automatically when 

offsetting C
0
/G

0
 continuous curves. 



3 NURBS curve subdivision 

 Traditional subdivision method 3.1

In this paper, it is assumed that all the curves are described in the NURBS form. 

The detailed mathematical description of the NURBS can be found in literature (Sun 

et al. 2004). The main idea of NURBS curve subdivision is listed as follows (Piegl 

and Tiller 1999): 

1) Decomposing the NURBS entity into Bézier pieces. 

2) Sampling each Bézier piece uniformly at (p+1) points for non-rational, and 

2(p+1) points for rational, where p is the degree. 

3) At these points, computing the geometric entities such as curvatures and unit 

normals. 

4) Subdividing the Bézier piece into line segments to be offset with the theorem 

1 (Filip 1986) as following: 

Theorem 1. Let  ( ) : , nf t a b   be any 
2C  curve and let ( )tl  be the linearly 

parameterized line segment with ( ) ( )a af l  and ( ) ( )b bf l . Then 
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(3) 

Therefore, a certain number of division line segments are sufficiently accurate to 

define the curve. The number of subdivision points is given by (Sun et al. 2004)： 

 8

M
n




 
(4) 



where   is the tolerance, M  is the bound on the second derivatives of the sampled 

points on the original curve. 

The subdivision algorithm does not consider the effect of different offset 

distances. Suppose the original curve is divided with uniform spacing. As shown in 

Figure 2(A), when the original curve is a line segment, i.e., the curvatures of every 

point on it are 0, all the lengths of the subdivision line segments are s  before and 

after offsetting and whatever the offset distance is. When the original curve is a 

non-linear curve, however, the line segment lengths increase with the offset distance 

and the curvature radius. We take an arc for example, as shown in Figure 2(B). It is 

assumed that the curvature radius of every point on it is r and the offset distance d is 

r/2, and the angle between two lines OP0i and OP0i+1 is  .  

After offsetting, the lengths of the line segment 
os  between P0i and P0i+1 is： 

 
  2

2 sinos r d   
 

(5) 

os  are varied from the curvature radii on the curve. Thus, the uniform subdivision 

line segments are non-uniform after offsetting when the curve has different 

curvatures. 



 

Figure 2. Offsetting of a line and an arc on different distance 

 However, the accuracy error of the approximation offset method based on curve 

interpolation or fitting depends on the max distance among interpolated or fitted 

points (Lucas 1974). For example, the error of the cubic spline interpolation is 

4

max( )O s , where 
maxs is the largest length among the line segments. Hence, when a 

curve is subdivided into line segments for offsetting, the accuracy effect of the offset 

distance should be considered here. Keeping the uniform distribution of the line 

segment lengths after offsetting can improve the accuracy of the offset curve 

generation.  

 Improved subdivision method 3.2

From Equation (5), the increase rate of a line segment length s is: 
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(6) 

where s  and 
os  denote the line segments lengths before and after offset 

respectively. The offset distance is d and the curvature radius is r. When d r , the 

increased length of the line segment is twice original one, so inserting a midpoint can 



uniform the spacing distances. The density m of additional subdivision points is given 

by： 

  

d
m

r

 
  
   

(7) 

    denotes the floor operator. Because the curvature radii of the points on the 

original curve are not equal, the mean value of the curvature radii of two neighbor 

points generated by traditional subdivision method is used as r in the equation. After 

offsetting, the length variance of each line segment is less than s , i.e., the accuracy 

error of the offset curve generation by interpolation is determined by s . 

An offset of a 3D cubic Bézier curve is taken as an example to show the process 

and effect of the improved subdivision algorithm. The Bézier curve is defined by four 

control points, (200,200,200), (300,500,300), (400,600,500) and (600,200,600) and 

the offset distance is 400. First, 20 points shown in Figure 3(A) are generated by the 

traditional subdivision method when the precision   is set at 1. And then, the 

improved method produced 83 additional subdivision points inserted in the intervals 

of the 20 points as shown in Figure 3 (C). For the two methods, the mean value, max 

value and standard deviation (SD) of the subdivision line segment lengths are shown 

in Table 1. By offsetting and interpolating the line segments with cubic spline, the 

offset curves are shown in Figure 3 (B) and (D). As shown in Table 1, the max length 

of the subdivision line segments for the traditional method is enlarged by 100.0%, but 

for the improve one, it is only 18.4%. 500 points are sampled uniformly on the offset 

curves to check the accuracy of the offset curve generation. The SD of the offset error 



by the improved method is reduced by 99.761% over the traditional one from 2.280×

10
-2

 to 5.470×10
-5

. 

 

Figure 3. Subdivided and offset points by the two division methods 

Table 1 Comparison of the two division methods 

 Traditional division method Improved division method 

 Mean Max SD Mean Max SD 

Before offset 42.822 68.616 10.666 9.927 32.720 8.139 

After offset 88.517 137.555 25.191 20.535 38.739 7.132 

Interpolation 399.998 400.030 2.280×10
-2

 400.000 400.003 5.470×10
-5

 

4 Overlapping elimination 

For 2D curves, the offset curves shown in Figure 4 are split into small loops by 

the self-intersection points. Some of these loops are invalid and must be removed; 

these are local invalid loops and global invalid loops. A local invalid loop is only 

bounded by one self-intersection point, while a global invalid loop is bounded by a 

pair of self-intersection points. 



 

Figure 4. Raw offset curves (Lee et al. 2009) 

For 3D curve offsetting in engineering design, another problem, overlapping, may 

occur. Figure 5 shows the different views of an overlapping curve. It does not 

self-intersect as shown in Figure 5(A), but in the parting direction (Z-axis) as shown 

in Figure 5(B), it makes some part of the parting surface invisible which cannot 

separate the mold into two parts, the core and the cavity. These problems cannot be 

solved by current CAD software automatically. In this section, an overlapping region 

elimination method is proposed to recast a valid offset curve for ruled surface 

generation in a straightforward way. 



 

Figure 5. 3D offset curve and overlapping region on parting direction 

After subdivision and offsetting, a raw offset curve is obtained, which is made up 

of line segments. As shown in Figure 6, the outer curve is the raw offset one from the 

original curve (inner one). Point A, B and C are a planar local intersection, a global 

intersection and an overlapping point, respectively. The major steps of the algorithm 

for overlapping elimination are summarized as follows: 

(1) For detecting the overlapping points, the raw offset curve is projected on an 

arbitrary plane perpendicular to the parting direction, and then the overlapping 

problem becomes an intersection problem of planar curves.  

(2) Each line segments is selected from the raw curve along the arrow direction. 

If the line segment intersects with the one selected in the sequence of the line 

segments, the segments between the two intersecting lines are composed of an invalid 



loop which will be eliminated. For example, as shown in Figure 6, the line segment 

Pi-1-Pi intersects with Pj-Pj+1 at the cross point C on the project plane. The line 

segments between Pi and Pj will be removed. 

(3) With the projection reverse computation, two overlapping points Pic and Pjc on 

the raw offset curve can be found from the point C.  

(4) The invalid loop (near the point B) between Pic and Pjc is eliminated. And then 

the trimmed raw offset is obtained. 

 

Figure 6. Illustration of overlapping elimination 

The elimination approach can also detect local and global self-intersections of 

planar curves. After interpolation of the line segments in the trimmed raw offset 

curves, the final offset curves are obtained as shown in Figure 7 which contains two 

difference views of the curves. The offset curves are grouped by two curves, one from 

A to C and another form C to A, which have a discontinuous point A and a C
0
 

continuous point C. 



 

Figure 7. Offset curves after intersection/overlapping elimination 

5 Transition 

For repairing the break and intersection/overlapping problems occurred at the 

C
0
/G

0
 continuity points and in the discontinuous regions, a transition algorithm is 

proposed in this section. The discontinuous region caused by the overlapping 

elimination in above section can also be repaired by this method. It is assumed that 

i ( )tr
and i+1( )tr  are two edges connected at P where the iso-parameter t is 1 for i ( )tr

 

and 0 for i+1( )tr
. After offsetting, if i i+1(1) (0) r r

, i.e. i ( )tr
 
and i+1( )tr  are

 

first-order-discontinuous, the following method will repair the offset curves. Let 

1- (1) (0)i i
  s r r

. If 0 s z , i.e. convex offset condition shown in Figure 8(a), the 

method in Section 5.1 attends to the situation. Otherwise it is concave offset condition 

shown in Figure 8(b), and the method in Section 5.2 handled. 



 

Figure 8. Two offset conditions in C0/G0 continuous curves 

 Convex offset 5.1

As shown in Figure 9, a break occurs at the co-vertex after offsetting; therefore, a 

transition curve is needed to bridge the gap. The general method inserts a circle or 

helix curve, but it cannot ensure the C
1
 continuous connection. At the same time, the 

transition curve has to satisfy the requirement of equidistant offset. Spherical curves 

just meet the requirements. Wang and Qin (2000)
 
proposed a method to solve a 

rational Bézier curve on a sphere, which attains the continuous property at two 

vertices. However, the curve with negative weights cannot be drawn out in most 

design systems, because the negative weights may bring the singularity (Yang et al. 

2006). In order to construct a transition curve with the continuous and equidistant 

properties, a new algorithm for generating positive weights spherical rational quartic 

Bezier curve is proposed in this section. 

 



Figure 9. The transition curve in convex offset 

Wang and Qin (2000) proved that, there exists a spherical quadratic rational 

Bézier curve that satisfies C
1
 continuity at two boundary connection. Suppose

0X 、

1X 、
0T 、

1T  represent two position vectors and two tangent vectors, respectively, as 

shown in Figure 9. The form of a quadratic rational curve is shown as following: 
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where [0,1]t , [0,1]mw  ,
,4 ( )mB t  is Bernstein basis polynomials of degree 4, 
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2P  is supposed to be near the mid-point between 
0X  and 1X , so that 
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(9) 

where d is the offset length, 
2 2 2, , [0,1]p p p    , let 2 1w   for reducing unknown 

variable quantities. 

We use optimization method to solve the eight parameters of the sphere curve. 

The optimization objective is taken as the mean square distance between J uniform 

points and the vertex P, i.e. 
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(10) 



In order to maintain w positive, the method makes a punishment to the objective value 

once w is less than 0.  

Therefore, the problem of solving a positive weights spherical rational curve is 

transformed to a nonlinear programming problem which can be solved by many 

efficient approaches. This study chooses the Particle Swarm Optimization (PSO) 

method for its advantage over dealing with real number optimization (Wang et al. 

2007). The main concept of particle swarm optimization is to minimize nonlinear 

functions using particle swarm methodology inspired by simulating social behavior 

and related to bird flocking, fish schooling and swarming theory. Each individual is 

treated as a volume-less particle (a point) in the N-dimensional search space.  

The ith particle is represented as  0 1 3 4 2 2 2, , , , , ,i i i i i i i

i w w w w p p p  U  which 

consist of seven unknown parameters of the sphere curve. The best position of the ith 

particle at the kth iteration is recorded and represented as  i kh . The index of the 

particle having the best value among all the particles in the populations is represented 

by the symbol  kg . The rate of the position change (velocity) for particle i is 

represented as  1 2, , ,i i i iNV V VV . Then, the particles are manipulated according to 

the following equation at the k+1 iteration: 

 
         1 1 2 2k+1 ( ) [ ] [ ]i i i i ie k c r k k c r k k    V V h U g U

 
(11) 

and 

 
( 1) ( ) ( 1)i i ik k k   U U V

 
(12) 

where e is the inertia weight in the range of [0 1], c1 and c2 are two positive constants 

represent the cognitive and social parameters, respectively, which are usually set at 



2(Kennedy and Eberhart 1995), and r1 and r2 are two random functions in the range of 

[0 1]. 

An example is taken to show the process. As shown in Figure 9, two curves have 

a C
0
 continuous co-vertex P(0,0,0). The positions and tangent vectors of the break are 

X0(47.553, 0, 15.451), X1(29.389, 40.451, 0) and T0(-3.744, 53.960, 11.524), 

T1(-36.693, 26.659, -18.325), respectively. The PSO algorithm is run with a swarm 

size of 300, e= 0. 9. The number J in fitness function (10) is set at 100. Figure 10 

shows the solution history of the result using PSO. 

 

Figure 10. Solution of the PSO 

After 205 iterations, the stop precision is reached, and the fitness value g is 

8.68e-2. Finally, w0~w4 are 1.00, 0.658, 0.542, 0.585, 0.911, and
2 2 2, ,p p p   are 

0.999, 0.989, 0.919. From equations (8) and (9), the control points obtained are 

P0(47.553, 0, 15.451), P1(46.617, 13.490, 18.332), P2(45.045, 21.302, 10.669), 

P3(43.669, 30.076, 7.131), P4(29.389, 40.451, 0). With the control points and weights, 



a positive weights spherical quartic Bézier can be drawn in CAD and shown in Figure 

9. 

 Concave offset 5.2

At the co-vertex of the concave offset, the offset curves may intersect or overlap. 

In a 2D space, there is one intersection point of two offset curves. In the 3D state, in 

contrast, there may be no intersection point for two spatial curves, as shown in Figure 

11, however, they cannot produce a high-quality continuous ruled surface. Therefore, 

a transition method is needed to deal with it and recast a smooth offset curve as shown 

in Figure 11(B). 

 

Figure 11. Concave offset and the transition curve 



The transition process is list as follows: 

(1) As shown in Figure 11(C), suppose two offset curves, ( )o

i tr  and 
1( )o

i tr , are C
0
 

continuous and concave connection, hence they will overlapped after offsetting, 

and the parting direction is oriented in the same direction as Z axis. By projecting 

them to an arbitrary plan perpendicular to the parting direction, e.g. XOY plane, 

two planar curves, ( )xoy

i tr  and 
1 ( )xoy

i tr , are obtained, as shown in Figure 11(D). 

(2) Assuming that the curvatures of two offset curves change subtly near the 

overlapping region. As shown in Figure 11(D), the cross point P  of  ( )xoy

i tr  

and 
1 ( )xoy

i tr
 
can be obtained by nonlinear equation methods such as Newton 

iterative method, conjugate gradient method, etc. By inverse computation, the 

overlapping points ( )o P

i itr  and
 1 1( )o P

i it r  on ( )o

i tr  and 
1( )o

i tr , respectively, are 

found, as shown in Figure 11 (C).
 

 

(3) By the dichotomy method, point 
( )o D

i itr
 can be found on ( )o

i tr  with a distance 

D from the point ( )o P

i itr , as shown in Figure 11(C). The offset curve 
( )o

i tr
 is 

trimmed by the point 
( )o D

i itr
. With the same way, 1( )o

i tr
 is cut by the point 

1 1( )o D

i it r
.  

(4) Between 
( )o D

i itr
 and 1 1( )o D

i it r
, a

 
C

1 
continuous thrice Bézier curve p(t) is 

created to bridge the disconnection region. The trimming length D can adjust the 

size of the transition region. The larger D, the less sharp the transition section. 



6 Design cases 

The proposed method is implemented in C# based on Siemens NX, where some basic 

API functions are offered to create and operate curves, such as line, arc and NURBS. 

Two 3D offset cases are taken as design examples which have a wide range of 

features, like round corners, sharp corners. All the calculating steps are executed on a 

PC with an Intel(R) Core(TM) i3 CPU 530 with 2.93 GHz, 4 GB of RAM, and 

Windows 2008 as Operating System.  

 Horizontal offset 6.1

In mold design, parting surface design is one of the most important and difficult 

process, which can be formed by extruding portions of the parting line along 

directions that are perpendicular to the parting direction of the mold insert (Li 2003). 

Since the parting direction is generally set at Z-axis of the coordinate, the extruding 

directions of the parting curves are horizontal and outward to the product model. 

Figure 12 shows a parting surface design case of an injection mold for a car 

instrumental board part, where an overflow area shown in Figure 12(B) around the 3D 

parting curves is modeled as a ruled surface connecting the parting curves and their 

offset ones which usually have break/intersection/overlapping problems. The 

algorithm proposed in this paper can offset the 3D parting curves by eliminating and 

smoothing the overlapping region automatically to create a smooth parting surface, 

with which the designer can generate the core and the cavity of the injection mold 

easily. Figure 12(C) shows the movable half of the mold. 



 

Figure 12. Parting surfaces generation and the injection mold design of an instrument board part 

 Extending offset 6.2

In checking fixture design, the checking surfaces of the checking components are 

usually obtained by extending the boundary of the surfaces to be checked along their 

tangent direction. Figure 13(A) shows a sheet metal product with a flange (checking 

surfaces). Note that the outer boundary curve of the flange is obtained by 3D 

offsetting of the inner boundary, and the flange is modeled as a ruled surface 

connecting the outer boundary. Because the inner boundary, i.e. the contour curve of 

the product, has many C
0
/G

0
 continuous points, such as Q1, Q2, Q3 and Q4, as shown 

in Figure 13(B), which may result in break and overlapping mentioned above. The 

algorithm proposed in this paper can create those ruled surfaces smoothly without 

manual operations. Finally, the designer may generates the checking block by 



stretching those ruled surfaces from the flange to the top of the workbench, as shown 

in Figure 13(C). 

 

Figure 13. Checking surface generation and the checking fixture of a car fender 

7 Conclusion 

In this paper, a 3D curve offset approximation algorithm is proposed, which contains 

all key process solutions for ruled surface generation in engineering design, such as 

curve division, break/intersection/overlapping elimination and transition. For 

considering the accuracy effect of the different offset distances and curvatures, the 

improved curve division method enhances the accuracy of the offset generation. 

Different from 2D curves, overlapping, as a new problem in 3D offset curve, is 

eliminated by an overlapping detection method. To tackle some discontinuous or 

low-continuous regions that may result in breaking or overlapping ruled surfaces, a 



transition method is presented, which can bridge or smooth the regions with two 

approaches for convex and concave situations, respectively. In this method, a new 

algorithm for generating positive weights spherical rational quartic Bezier curves is 

proposed to bridge the breaks of offset curves. 

The proposed algorithm is implemented in C# and embedded in Siemens NX 

CAD system. Two engineering cases, checking surface and parting surface 

generation, demonstrate that the approach enhances the automation level and the 

efficiency in engineering design.  
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